| 東京大学 | 大学院数理科学研究科 | FMSP |

東京大学FMSP事業の一環として,下記のサマースクールを開催します. チュートリアル形式の講義ですので,非専門家や若手を含む,多くの方々のご参加を歓迎します.
世話人代表  俣野 博
日程: 2013年7月25日(木)〜26日(金)
場所: 東京大学大学院数理科学研究科棟 002教室 (京王井の頭線駒場東大前駅よりすぐ)
講師:
1.Henri Berestycki 氏 (EHESS) 全3回講義
  テーマ: 「非一様媒質における反応拡散方程式」
2.Frank Merle 氏 (Cergy Pontoise 大学/IHES) 全3回講義
  テーマ: 「分散型偏微分方程式におけるソリトンと漸近挙動」
プログラム:
10:30-12:00 (昼食) 13:30-15:0015:20-16:50
7/25(木) Berestycki - Berestycki Merle
7/26(金) Berestycki - Merle Merle

1. Henri Berestycki 氏: "Reaction-diffusion equations in non homogeneous media"

要旨: In this series of lectures, I will discuss some nonlinear partial differential equations of elliptic or parabolic types that are spatially inhomogeneous. The motivation comes mostly from ecology, but such models also arise in biology and medicine. Some recent progress has been achieved with new ideas that I will present in the mini-course.
Topics include waves guided by the medium, propagation involving fast diffusion on a line, propagation and spreading speeds in non-homogeneous media and a model for the effect of climate change on biological populations.

2.Frank Merle 氏: "Soliton and asymptotic behavior for dispersive PDE"

要旨: I will present recent works on critical problems including the energy critical nonlinear wave and the mass critical generalized KdV equation. The goal is to understand the qualitative behavior of a general solution asymptotically in time (for large time for global in time solution and if not close to the blow-up time ).
These descriptions in particular involve solitons. The methods for obtaining these results include Rigidity or Liouville theorems, dynamical system, soliton resolution conjecture, Minimal Element for dispersive equation, Kenig-Merle method for critical problem.

世話人: 俣野博(代表) 問い合わせ先: matanoms.u-tokyo.ac.jp
会場へのアクセスは, http://www.ms.u-tokyo.ac.jp/access/index.html にてご確認ください.
Leading Graduate Course for Frontiers of Mathematical Sciences and Physics,
The University of Tokyo